
4. ELECTRO-MAGNETIC COMPATIBILITY  

Abstract — In order to address the signal integrity issue, 
Galilean electromagnetism is derived from a thermodynamic 
approach. Attention is paid on the various regimes allowed by the 
quasi-static limit. It is emphasized that an abrupt transition exists 
between the QS-magnetic and the QS-electric regimes for which 
different gauge conditions on the potentials should be considered. 

I. INTRODUCTION 

Loss of signal integrity becomes a critical issue in power 
electrical engineering, due to the higher level of integration in 
power electronics, the generalization of Pulse Width 
Modulation power supply, or the decreasing duration of 
commutations. In order to address their considerable impacts 
on both energy efficiency and the performance requirements 
former analyses were mostly focused on the circuit description. 
Loss in signal integrity is then explained as a more or less 
continuous change in the impedance of the system with the 
frequency. At the opposite, the problem is here addressed 
within the framework of the Galilean electromagnetism 
introduced in [1]. It is shown that the loss of signal integrity 
must be considered as intrinsically discontinuous. 

In the following, a variational approach of 
electromagnetism is proposed. Then various regimes occurring 
within the quasi-static limit are discussed from the covariance 
property. Finally, the transition between regimes is explained 
as a change in the gauge condition. 

II. VARIATIONAL FORMULATION OF ELECTROMAGNETISM 

Classically, thermodynamic approaches of 
electromagnetism do not consider any extension towards time-
varying regimes [2]. Whereas some improvements are 
summarized in [3] for steady state regimes, no general 
contribution is available for transient. Denoting, as a general 
rule in this work, variational parameters or functionals thanks 
to italic fonts whereas roman ones specify their values at the 
minimum, the magnetodynamic behavior of any electrical 
system is derived from the functional [4]: 
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where the functional in the RHS exhibits: 
• the magnetic field H related to free and displacement 

currents according to the Maxwell-Ampere equation: 
 DJH t∂+=curl  (2) 

While the quasi-static approximation enforces a 
vanishing electric displacement (D≡0) in conductors 
(i.e. no free charges), the charge conservation at the 
various interfaces provides the continuity equation: 

 [ ] [ ]( ) 0=×−× DH Vn  (3) 

where V is the velocity of the interfaces in the rest 
frame, n the unit vector oriented by the interface and [⋅] 
denotes the field discontinuity occurring thereon; 

• the Joule losses PJ monitored in conductors. This term 
is even to respect invariance of losses with the inversion 
of time (σ −1 is the resistivity); 

• the variation with time of the electromagnetic energy 
coupling the field with the generator I and the mass V0; 

• the magnetic B(h) and electrostatic D(e) behavior laws 
derived from thermostatic equilibrium of the Gibbs 
potential: 
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where the flux density B and the electric displacement 
D are divergence-free to ensure that G is a state-
function. 

Galilean covariance states that stationary conditions 
expressed from (1) do adopt a form independent of the 
Galilean frame where is performed the time-derivation. 
Introducing V’ as the relative velocity of the frame (’) in (1), 
some calculations on the convective derivative of the 
electromagnetic energy coupling yield the transformation law 
for the electric field: 
 BVEE ×+= ''  (5) 

whereas the flux density and the electric displacement are kept: 
 BB ='  (6) 
 DD ='  (7) 

Hence, extending the electric field in a moving conductor 
(with the velocity V) according to Ohm’s law with motion: 
 BVJE ×−= −1σ  (8) 

Maxwell-Faraday’s equation: 
 BEcurl t−∂=   (9) 

and its subsequent continuity equation: 
 [ ] [ ]( ) 0=×+× BVEn  (10) 

may be viewed as acting locally to check globally a tendency 
towards reversibility [5]. This striking property provides a 
thermodynamic oriented insight of the variational theory of 
electromagnetism [6]. Hence, the functional (1) balances the 
variations with time of the co-energy (−G) and the mechanical 
power received from the field by the actuators (−Pmech). 
It should be noticed that Maxwell-Faraday equation (9) 
provides the flux density divergence-free at any time which is 
a mandatory condition to derive (5) in its usual form. 
Similarly, the transformation law of the magnetic field reads: 
 DVHH ×−= ''  (11) 
according to (3). 
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In order to consider sub-systems for design purpose, it is 
convenient to introduce the electrical power on the domain Ω: 
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so that the contribution of Ω to (1) reads:  
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III.  QUASI-STATIC REGIMES 

The set of transformation laws (6), (7), (5) and (11) is not 
compatible with the invariance of the behavior laws, at least in 
vacuum. As quasi-static phenomena are observed, it is 
mandatory to admit that one coupling term in (1) prevails 
much more than the other. As a result, the quasi-static limit 
must be split in magnetic and electric regimes (Tab. 1) [1]. It 
should be noticed that the conductors are always depicted 
within the magnetic regime of the quasi-static limit. 

TABLE 1. REGIMES ALLOWED WITHIN THE QUASI-STATIC LIMIT (FROM [1]). 
THE RESOLUTION IS PERFORMED IN TWO STEPS: THE FIRST (SECOND) ONE 

INVOLVES THE DOMINANT (MARGINAL ) COUPLING. THE ARROW (⇐) DENOTES 

A FIELD OBTAINED FROM THE MAIN RESOLUTION WHICH ACTS AS A SOURCE 

FOR THE SECOND ONE. 
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Hence, the signal integrity issue in Electro-Magnetic 
Compatibility may be viewed as a transition in (1) between the 
magnetic and the electrostatic couplings in a given area of the 
dielectric region, the actual regime corresponding to the most 
reversible evolution of the global system. 

IV.  GAUGE CONDITIONS 

As a general rule, phase transition is associated with a 
break in the symmetry of the problem [7]. This point is 
discussed from the magnitude of the various times occurring in 
any electrodynamic problem of size l  [8], namely the 
magnetic diffusion time 2

m lσµτ =  and the charge life duration 

σ
ετ =e

 occurring in conductor; and the transit time of an 

electromagnetic wave crossing the system lεµτ =em
 

checking the relation 
em

2
em τττ = . These values could be faced 

to the typical duration τ of the excitation so that the various 
regimes may be schematically stressed (Fig.1) [9]. 
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Fig. 1. Domains of validity of the Quasi-static regimes with their gauges 
conditions. Notice the absence of border between the electric and magnetic 
regimes which reinforces the existence of a transition driven by the gauges. 

Defining the flux density and the electric field from the 
potentials (A,V) according to: 

 
AgradE

 AcurlB
t∂−−=

=
  V

 (16) 

various gauges may be considered according to the quasi-static 
regime to decouple the evolution equations expressed on the 
potentials. As a result, the transition between the QS-magnetic 
and the QS-electric regimes corresponds respectively to a 
change from the Stratton’s to the Lorentz’ gauges driven by 
the frequency 

τ
πω 2=  [10]. 

V. CONCLUSION AND FORTHCOMING 

The loss of signal integrity is explained as a transition 
between the QS-magnetic and QS-electric regimes. Moreover, 
thermodynamics provides the functionals (14) and (15) from 
which the discussion should be achieved. Such an 
implementation should be highly valuable to discuss signal 
integrity issue. 
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